Showing posts with label lion. Show all posts
Showing posts with label lion. Show all posts

October 28, 2016

The destiny of a cave lion: to serve as decoration

Quickies

Spanish researchers have concluded that a carpet or other comparable fur ornament (a tapestry?, a cape?) is why a late cave lion remains, the latest ones known in Iberia, were found in an otherwise human (Magdalenian) context in the cave of La Garma (Asturias, Spain): it was a fur, claws included, used as decoration of some sort.

Marian Cueto et al., Under the Skin of a Lion: Unique Evidence of Upper Paleolithic Exploitation and Use of Cave Lion (Panthera spelaea) from the Lower Gallery of La Garma (Spain). PLoS ONE, 2016. Open accessLINK [doi:10.1371/journal.pone.0163591]

Abstract

Pleistocene skinning and exploitation of carnivore furs have been previously inferred from archaeological evidence. Nevertheless, the evidence of skinning and fur processing tends to be weak and the interpretations are not strongly sustained by the archaeological record. In the present paper, we analyze unique evidence of patterned anthropic modification and skeletal representation of fossil remains of cave lion (Panthera spelaea) from the Lower Gallery of La Garma (Cantabria, Spain). This site is one of the few that provides Pleistocene examples of lion exploitation by humans. Our archaeozoological study suggests that lion-specialized pelt exploitation and use might have been related to ritual activities during the Middle Magdalenian period (ca. 14800 cal BC). Moreover, the specimens also represent the southernmost European and the latest evidence of cave lion exploitation in Iberia. Therefore, the study seeks to provide alternative explanations for lion extinction in Eurasia and argues for a role of hunting as a factor to take into account.

Fig 4. Cave lion distal phalanxes from the Lower Gallery of La Garma.
Note that only eight of nine specimens are depicted in the figure.

Above: the claws that are the only remnants found of said lion, whose cut marks are fully coincident with skinning techniques used in more recent times with similar decorative purpose. They are believed to be all anterior claws and that one is missing therefore. That is why they imagine the fur to have been cut with an aesthetic interest, because the hind claws would not be visible if the fur was, for example, hang on the wall, so they were probably cut off.

Whether hunting of lions by humans was a decisive, contributing or negligible factor in cave lion extinction remains unclear.

April 8, 2014

Lions also migrated out of Africa

A quick excursion from the humano-centric focus of this blog, in this occasion to the paleohistory of that fascinating social predator: the lion.

Ross Barnet et al., Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis. BMC Evolutionary Biology, 2014. Open accessLINK [doi:10.1186/1471-2148-14-70]

Abstract

Background

Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations.
Results

We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East.
Conclusions

We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions.  
 
 
Modern lions originated somewhere in Africa, possibly towards the East or South of the continent, and spread from there. Asian lions originated in North Africa and migrated Eastwards more or less like humans did. However, according to the study's molecular clock estimates, they did so only in the Mousterian Pluvial and not in the Abbassia Pluvial, as we did. 

The cave lion is a different (sub-)species, used in this study to root the phylogenetic tree.

Phylogenetic analyses of lion sequence data. A) Median network of 1051 bp of cytb for all 88 lion individuals identified from GenBank plus those generated in this study. Panthera leo spelaea was used as an outgroup. Circles are proportional to haplotype frequencies and black circles represent hypothesized intermediate haplotypes. The number of links represent the number of mutations between haplotypes. Haplotypes are labelled from A to S and correspond to sequences labelled in Table 1 and Additional file 3: Table S1. B) Phylogenetic tree from a Bayesian analysis of combined cytb and control region data for all lion taxa where available (n = 54). Posterior probabilities of supported clades are shown at nodes. Estimates of divergence times: (a) 124,200 years (95% credibility: 81,800-183,500); (b) 61,500 years (32,700-97,300); (c) 51,000 years (26,600-83,100); (d) 81,900 years (45,700-122,200); (e) 57,800 years (26,800-96,600); (f) 21,100 years (8300–38,800). Branch colours correspond to reconstructed ancestral geographic states (Purple, South Africa; Yellow, East Africa; Orange, West Africa; Red, Central Africa; Teal, North Africa; Blue, South Asia; Green, Near-East). Tip colours correspond to origins of samples.




Reconstructed distribution of the modern lion at different times. Estimates of spatial diffusion pathways at Marine Isotope Stage (MIS) time points: A. MIS5 B. MIS4-MIS3 C. MIS2-MIS1 D. Estimated natural distribution prior to anthropogenic disturbance. Black arrows show estimated spatial diffusions, with thicknesses proportional to Bayes factors. Movement from East Africa to South Africa (4.83), from South Africa to East Africa (4.66), from West Africa to Central Africa (3.00), from North Africa to South Asia (4.37), from South Asia to North Africa (4.50), from North Africa to Middle East (21.03). Tropical rainforest is shown in light grey (present distribution), maximal extent during humid periods (black dashed line), and minimal extent during arid periods (white dashed line). The Great Rift Valley is shown in dark grey. African rivers are shown in blue. Co, Congo; Ng, Niger; Ni, Nile; Se, Senegal.